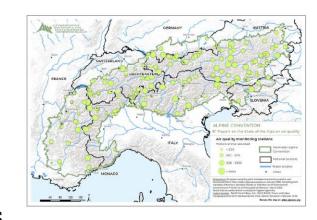


EU GREEN WEEK 2021 - PARTNER EVENT: An Alpine approach to improving air quality


4 June 2021

Status and trends of Alpine Air Quality — Laure Malherbe, Ineris

Status and trends of Alpine Air Quality

- Monitoring of air quality in the Alpine region is ensured by a geographically well-distributed network of monitoring stations.
- ➤ Available measurement data were used to assess pollutant concentrations over the recent years in relation to EU thresholds and WHO guidelines and analyse long-term trends.

Focus on regulated air quality pollutants:

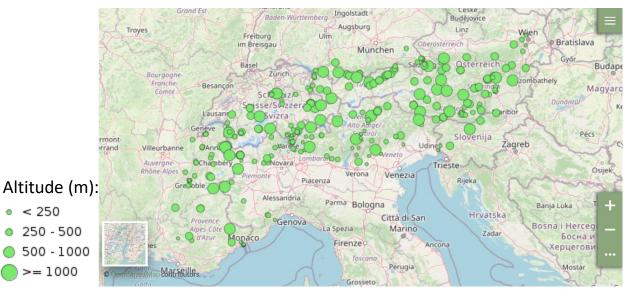
Particulate matter: PM₁₀ & PM_{2.5}, NO₂, O₃, SO₂, C₆H₆, CO, BaP, heavy metals

Outline

- Presentation of the monitoring network
- Status of concentrations
- Air quality trends

Sources of air quality data and related metadata

- European Air Quality Portal EEA (data officially reported by countries and transmitted to the European Environment Agency)
- Office for the Environment of the Principality of Liechtenstein and www.ostluft.ch
- Government of the Principality of Monaco
- Swiss Federal Office for the Environment (BAFU)



< 250</p>

250 - 500

>=1000

Air quality monitoring in the Alpine region

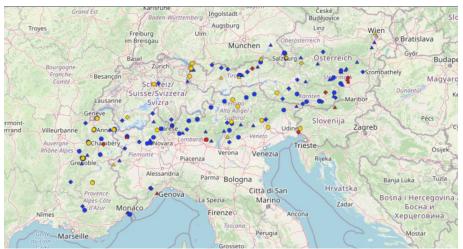
Operational air quality monitoring stations in the 2016-2018 period (all pollutants together)

Between 2016 and 2018:

234 air quality monitoring stations operated at the national and regional scales:

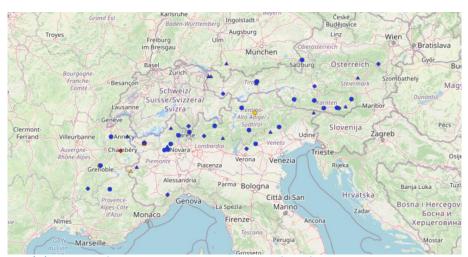
> 33% in rural areas 31% in suburban areas 36 % in urban areas

39 additional monitoring stations belonging to cantonal and municipal Swiss networks


About 86 % of all these stations are located in valleys.

Air quality monitoring in the Alpine region

- Most extensive for pollutants which have been regulated for longest time and still present exceedances of EU thresholds in the Alps: NO_2 , O_3 , PM_{10}
- \triangleright Less extensive but well developed for PM_{2.5} and benzo(a)pyrene
- ➤ Sparser and more irregularly distributed for pollutants with no identified issue in the region (SO₂, CO, benzene, heavy metals). For those pollutants less stringent types of assessment methods can also be used (like indicative measurements or objective estimation).
- ➤ Complementary monitoring campaigns (e.g. NO₂, BTEX, NH₃)
- > High altitude measurement stations as part of research-oriented programmes

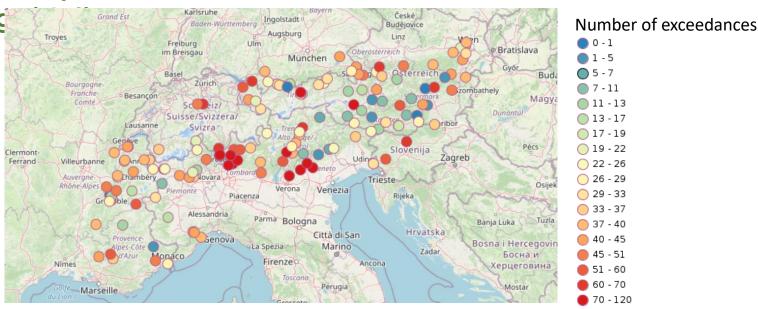

Air quality monitoring in the Alpine region

PM₁₀ air quality monitoring stations in the Alpine region in 2018

Type of area Influence

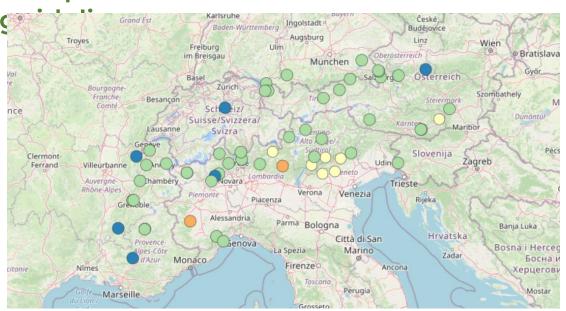
- Suburban Background
- Suburban Industrial
- Suburban Traffic
- Urban Background
- Urban Industrial
- Urban Traffic
- Rural Background
- Rural Industrial
- Rural Traffic

B(a)P air quality monitoring stations in the Alpine region in 2018



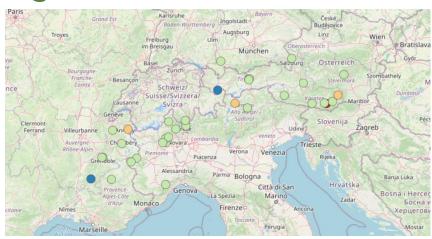
- Study period: 2016-2018
- Pollutants concerned by exceedances :
 - NO₂, O₃, PM₁₀, PM_{2.5}, B(a)P
- \triangleright Except for O₃, the number of stations concerned by exceedances of EU thresholds is limited and lower in 2018 compared to previous years. PM₁₀, and PM_{2.5} more stringent WHO guidelines are still widely exceeded.

Pollutant	Exceeded threshold	Protection target	Where ?
NO ₂	Annual limit value and WHO guideline (40 μg/m³)	Human health	Some traffic-oriented stations located in
NO_2	Hourly WHO guideline (200 μg/m³)	Human health	valleys
O_3	Long-term objective (daily max 8-hour 120 $\mu g/m^3$) Target value (120 $\mu g/m^3$, not to be exceeded more than 25 times on average over 3 years)	Human health	Background sites across the Alpine
O ₃	WHO guideline (daily max 8-hour 100 $\mu g/m^3$)	Human health	region
O ₃	AOT40 long-term objective and target value	Vegetation	



Yearly number of exceedances of O_3 long-term objective (120 $\mu g/m^3$) in the Alpine region in 2018

	1 1 1 1				
Pollutant	Exceeded threshold	Protection target	Where ?		
PM_{10}	Daily limit value (50 μg/m³ not to be exceeded more than 35 times)	Human health	Very few (sub)urban background stations or industry-oriented sites		
PM ₁₀	Daily WHO guideline (50 µg/m3 not to be exceeded more than 3 times)	Human health	Nearly half of the stations measuring PM ₁₀		
PM ₁₀	Annual WHO guideline (20 μg/m³)	Human health	A quarter of the stations measuring PM ₁₀ , mostly in the southern half of the Alpine region		
PM _{2.5}	Annual WHO guideline (10 μg/m³)	Human health	Most stations measuring PM _{2.5}		



- 5.6 10 μg/m3 (WHO Guideline)
- 10 15 μg/m3
- 🔵 15 20 μg/m3
- 20 25 μg/m3 (EU limit value)
- 🛑 25 50 μg/m3

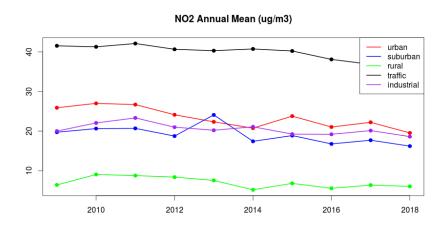
 $PM_{2.5}$ annual mean ($\mu g/m^3$) in the Alpine region in 2018

Locally higher levels of B(a)P at urban or suburban background stations

- 0.06 0.12 ng/m3 (WHO reference level)
- 0.12 1.0 (EU target value)
- 1.0 1.5 ng/m3
- 🛑 1.5 1.9 ng/m3

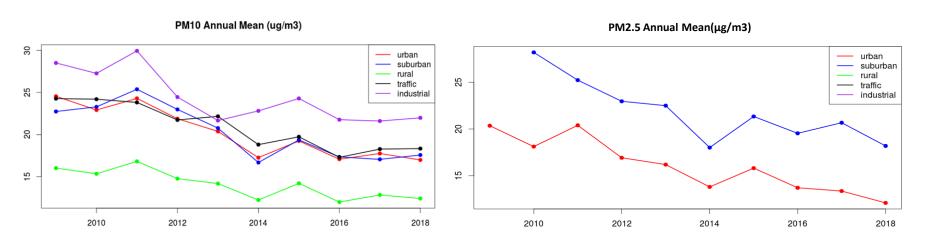
B(a)P annual mean (ng/m^3) in the Alpine region in 2018

State of air quality in the Alpine region Air quality trends


- Analysis focused on NO₂, O₃, PM₁₀, PM_{2.5}, B(a)P
- Period considered: 2009-2018
- ➤ Results are consistent with trends observed at the EU-level (EEA, Air quality in Europe-2020 report)

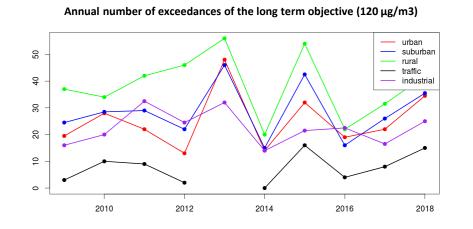
State of air quality in the Alpine region Air quality trends

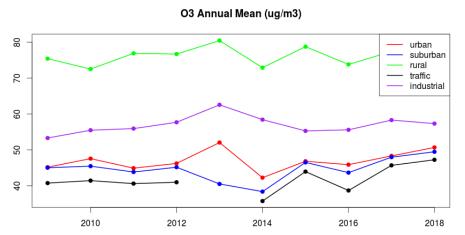
 \triangleright Overall reduction in NO₂, PM₁₀ and PM_{2.5} concentrations


With a more or less pronounced trend depending on the pollutant and the station

State of air quality in the Alpine region Air quality trends

 \triangleright Overall reduction in NO₂ PM₁₀ and PM_{2.5} concentrations


B(a)P: rather downward evolution but need for more data to confirm



State of air quality in the Alpine region Air quality trends

No clear trend for ozone

With strong interannual variations for indicators related to short-term values

Maps available at:

https://www.atlas.alpconv.org/layers/

(category Air quality)

