

Denmark plans to:

- Phase out all fossil fuels before 2050
- Heating and electricity all by renewable energy before 2035

Solar thermal:

- 2030: 15 % of decreased heating demand
- ➤ 2050: → 40 % of decreased heating demand 80 % of the solar heat via district heating

District heating total Solar District Heating				
	PJ	PJ	%	/
2011	133	0.30	0.2%	
2012	150	0.50	0.3%	
2013	140	1.00	0.7%	/
2014	135	1.33	1.0 %	

Solar District Heating

Experiences from Denmark

WHY so successful in DK?

- Long time tradition for district heating
- Good price / performance of ground mounted collectors
- High tax on natural gas
- Competive heat production price
- Interaction with liberal electricity market

Prices ex. VAT

Long time tradition for district heating in Denmark

- 60 % of all heating demand* is now supplied by district heating
 - Large central CHP: 35 plants; 45 % of district heating supply
 - Small de-central CHP: 540 plants; 20 % of district heating supply
 - Small heating centrals: 1 213 plants; 20 % of district heating supply
- Low temperatures
 - Forward 70 80°C; Return 35 45°C ... still going down
- Available district heating networks in the country side with cheap ground
- Special structure of de-central district heating companies: Small, user owned -> local back-up -> positive attitude from local authorities

*) Low application temperature: < 80°C

Good price of installations

- Prices down to 190 €/m² collector ≈ 270 €/kW (system in operation)
- Average around 250 €/m² ≈ 360 €/kW
- Large modules fast installation
- 2 companies competing rather hard:

Good performance

- Max. collector field output > 530 kWh/m²; max. efficiency > 50 %
- Average output: 440 kWh/m²; average efficiency: 40 %

Good heat production price

- Prices down to 30 €/MWh (0.03 €/kWh)
- Average around 45 €/MWh (0.045 €/kWh)

Gas price (with/without tax)

Energy Platform Workshop 3, Zurich - 13/2 2014

Interaction with dynamic electricity production

- Simple solar district heating systems with solar fractions of 5 25 % are most popular so far around 10 000 m² (7 MW) but it seems to be cost effective too, to go for higher solar fractions / long term storage due to:
 - Improved storage technology (simple/cheap)
 - □ LARGE SYSTEMS \rightarrow small storage losses & lower specific costs
 - Interaction with liberal electricity market
 - Benefits from combining technologies

Cheap storage technology, water pit (or borehole)

Price: 20 €/m³

LARGE SYSTEMS → small storage losses & lower specific costs

Surface area per volume

 $1.2 \rightarrow 0.1 \rightarrow$ Factor 12 on surface area/volume (heat loss/storage capacity($500 \rightarrow 20 \rightarrow$ Factor 25 on costs/volume (cost/storage capacity)

Cost per equivalent m³

Interaction with liberal electricity market

Problem:

As renewable electricity production increases - the mismatch of production versus load increases and so do the dynamics of the electricity price:

Interaction with liberal electricity market

Solution:

Combined technologies and heat storage interacting with the electricity grid ...

Benefits from combining technologies and using heat storage

Trend: More and more electricity production from wind & PV ... → Less and less need for electricity production from CHP ...

Solar District Heating

Experiences from Denmark

Potential for "Renewable Heating" (2011)

Technologies for Solar District Heating

Flat plate collectors (FP)

Technologies for Solar District Heating

Technologies for Solar District Heating

Concentrating collectors (CSP)

Solar District Heating

Experiences from Denmark

Technologies for Solar District Heating

Forward = 90° & Return = $50^{\circ} \rightarrow \text{Tm} = 70^{\circ}\text{C}$

Examples

>30 systems on-line at www.solvarmedata.dk

System info:

- Size
- Price
- Measured output
- •••

Large-scale solar heating plants for district heating

Example: Ulsted (2006)

- Inhabitants: 1 100
- Collector area: 5 000 m²
- Solar fraction: 23 %
- System price: 270 €/m²
- Solar heat price*: 48 €/MWh
- Other heat resource: Pellets

*) 20 years, 3% net interest rate, operation & maintenance 1% of investment per year

Example: Marstal (2012) "SUNSTORE 4" (EU 7th FP)

- Collector area: 18 000 + 15 000 m²
- Store volume: 75 000 m³
- Heat pump: 1 MW
- Boiler: 4 MW (wood chip)
- CHP: 0.75 MWe (ORC)
- Renewable fraction: 100 %

Solar District Heating

Experiences from Denmark

Dronninglund now operating:

37 300 m² (26 MW) collectors

60 000 m3 storage

Lars Damkjaer, Gram District Heating Company:

"Extending (in 2014) from 15 % to 56 % solar fraction 11 000 m² to 45 000 m² (32 MW) is the basic element in our plan to become the cheapest district heat provider in Denmark".

Jan Erik Nielsen, PlanEnergi:

District heating is a good argument for solar heating Solar heating is a good argument for district heating

- ✓ Renewable electricity production
 - Solar (PV, CSP)
 - U Wind

 \checkmark

CHP (biomass)

FITS VERY WELL WITH:

✓ Renewable heat production

- **Solar (thermal)**
- Heat pump (wind)
- CHP (waste heat)
- STORAGE

Thank you for your attention

jen@planenergi.dk

www.planenergi.dk

